Поиск по сайту:

Функции потерь в Python — простая реализация


Функции потерь в Python являются неотъемлемой частью любой модели машинного обучения. Эти функции говорят нам, насколько прогнозируемый результат модели отличается от фактического результата.

Существует несколько способов расчета этой разницы. В этом уроке мы рассмотрим некоторые из наиболее популярных функций потерь.

В этом уроке мы собираемся обсудить следующие четыре функции потерь.

  1. Среднеквадратическая ошибка
  2. Среднеквадратическая ошибка
  3. Средняя абсолютная ошибка
  4. Кросс-энтропийные потери

Из этих 4 функций потерь первые три применимы к моделям классификации.

Реализация функций потерь в Python

Давайте посмотрим, как реализовать эти функции потерь в Python.

1. Среднеквадратическая ошибка (MSE)

Среднеквадратическая ошибка (MSE) рассчитывается как среднее квадрата разницы между предсказаниями и фактическими наблюдениями. Математически мы можем представить это следующим образом:

Реализация Python для MSE выглядит следующим образом:

import numpy as np
def mean_squared_error(act, pred):

   diff = pred - act
   differences_squared = diff ** 2
   mean_diff = differences_squared.mean()
   
   return mean_diff

act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])

print(mean_squared_error(act,pred))

Выход :

0.04666666666666667

Вы также можете использовать mean_squared_error из sklearn для расчета MSE. Вот как работает функция:

from sklearn.metrics import mean_squared_error
act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])
mean_squared_error(act, pred)

Выход :

0.04666666666666667

2. Среднеквадратическая ошибка (RMSE)

Среднеквадратическая ошибка (RMSE) рассчитывается как квадратный корень из среднеквадратичной ошибки. Математически мы можем представить это следующим образом:

Реализация Python для RMSE выглядит следующим образом:

import numpy as np
def root_mean_squared_error(act, pred):

   diff = pred - act
   differences_squared = diff ** 2
   mean_diff = differences_squared.mean()
   rmse_val = np.sqrt(mean_diff)
   return rmse_val

act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])

print(root_mean_squared_error(act,pred))

Выход :

0.21602468994692867

Вы также можете использовать mean_squared_error из sklearn для расчета RMSE. Давайте посмотрим, как реализовать RMSE, используя ту же функцию:

from sklearn.metrics import mean_squared_error
act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])
mean_squared_error(act, pred, squared = False)

Выход :

0.21602468994692867

Если для параметра squared установлено значение True, функция возвращает значение MSE. Если установлено значение False, функция возвращает значение RMSE.

3. Средняя абсолютная ошибка (MAE)

Средняя абсолютная ошибка (MAE) рассчитывается как среднее значение абсолютной разницы между прогнозами и фактическими наблюдениями. Математически мы можем представить это следующим образом:

Реализация Python для MAE выглядит следующим образом:

import numpy as np
def mean_absolute_error(act, pred):
    diff = pred - act
    abs_diff = np.absolute(diff)
    mean_diff = abs_diff.mean()
    return mean_diff

act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])
mean_absolute_error(act,pred)

Выход :

0.20000000000000004

Вы также можете использовать mean_absolute_error из sklearn для расчета MAE.

from sklearn.metrics import mean_absolute_error
act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])
mean_absolute_error(act, pred)

Выход :

0.20000000000000004

4. Функция кросс-энтропийной потери в Python

Перекрестная энтропийная потеря также известна как отрицательная логарифмическая вероятность. Это чаще всего используется для задач классификации. Проблема классификации — это проблема, в которой вы классифицируете пример как принадлежащий к одному из более чем двух классов.

Давайте посмотрим, как вычислить ошибку в случае проблемы бинарной классификации.

Давайте рассмотрим проблему классификации, когда модель пытается провести классификацию между собакой и кошкой.

Код Python для поиска ошибки приведен ниже.

from sklearn.metrics import log_loss
log_loss(["Dog", "Cat", "Cat", "Dog"],[[.1, .9], [.9, .1], [.8, .2], [.35, .65]])

Выход :

0.21616187468057912

Мы используем метод log_loss из sklearn.

Первый аргумент в вызове функции — это список правильных меток классов для каждого входа. Второй аргумент — это список вероятностей, предсказанных моделью.

Вероятности представлены в следующем формате:

[P(dog), P(cat)]

Заключение

Это руководство было посвящено функциям потерь в Python. Мы рассмотрели различные функции потерь как для задач регрессии, так и для задач классификации. Надеюсь, вам было весело учиться вместе с нами!